Unlocking the Door to Neuronal Woes in Alzheimer’s Disease: Aβ and Mitochondrial Permeability Transition Pore

نویسندگان

  • Heng Du
  • Shirley ShiDu Yan
چکیده

Mitochondrial dysfunction occurs early in the progression of Alzheimer's disease. Amyloid-β peptide has deleterious effects on mitochondrial function and contributes to energy failure, respiratory chain impairment, neuronal apoptosis, and generation of reactive oxygen species in Alzheimer's disease. The mechanisms underlying amyloid-β induced mitochondrial stress remain unclear. Emerging evidence indicates that mitochondrial permeability transition pore is important for maintenance of mitochondrial and neuronal function in aging and neurodegenerative disease. Cyclophilin D (Cyp D) plays a central role in opening mitochondrial permeability transition pores, ultimately leading to cell death. Interaction of amyloid-β with cyclophilin D triggers or enhances the formation of mitochondrial permeability transition pores, consequently exacerbating mitochondrial and neuronal dysfunction, as shown by decreased mitochondrial membrane potential, impaired mitochondrial respiration function, and increased oxidative stress and cytochrome c release. Blockade of cyclophilin D by genetic abrogation or pharmacologic inhibition protects mitochondria and neurons from amyloid-β induced toxicity, suggesting that cyclophilin D dependent mitochondrial transition pores are a therapeutic target for Alzheimer's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclophilin D Deficiency Rescues Axonal Mitochondrial Transport in Alzheimer’s Neurons

Normal axonal mitochondrial transport and function is essential for the maintenance of synaptic function. Abnormal mitochondrial motility and mitochondrial dysfunction within axons are critical for amyloid β (Aβ)-induced synaptic stress and the loss of synapses relevant to the pathogenesis of Alzheimer's disease (AD). However, the mechanisms controlling axonal mitochondrial function and transpo...

متن کامل

Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration.

The coexistence of neuronal mitochondrial pathology and synaptic dysfunction is an early pathological feature of Alzheimer's disease (AD). Cyclophilin D (CypD), an integral part of mitochondrial permeability transition pore (mPTP), is involved in amyloid beta (Aβ)-instigated mitochondrial dysfunction. Blockade of CypD prevents Aβ-induced mitochondrial malfunction and the consequent cognitive im...

متن کامل

Wnt Signaling Prevents the Aβ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons

Alzheimer's disease (AD) is a neurodegenerative disorder mainly known for synaptic impairment and neuronal cell loss, affecting memory processes. Beside these damages, mitochondria have been implicated in the pathogenesis of AD through the induction of the mitochondrial permeability transition pore (mPTP). The mPTP is a non-selective pore that is formed under apoptotic conditions, disturbing mi...

متن کامل

Methanol extract and fraction of Anchomanes difformis root tuber modulate liver mitochondrial membrane permeability transition pore opening in rats

Objective: Extracts of Anchomanes difformis (AD) are used in folkloric medicine to treat several diseases and infections. However, their roles in mitochondrial permeability transition pore opening are not known. Material and Methods: The viability of mitochondria isolated from Wistar rat liver used in this experiment, was assessed by monitoring their swel...

متن کامل

Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer’s disease

F1FO-ATP synthase is critical for mitochondrial functions. The deregulation of this enzyme results in dampened mitochondrial oxidative phosphorylation (OXPHOS) and activated mitochondrial permeability transition (mPT), defects which accompany Alzheimer's disease (AD). However, the molecular mechanisms that connect F1FO-ATP synthase dysfunction and AD remain unclear. Here, we observe selective l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010